Skip to contents

Introduction

Matrix Factorization (also known as Decomposition) is a technique used to reduce a complex dataset into a smaller set of fundamental “factors” or patterns. In the context of Formal Concept Analysis (FCA), this corresponds to finding a small subset of concepts that can explain or reconstruct the original data with minimal error.

Given an object-attribute matrix II of size n×mn \times m, we seek to factorize it into two matrices:

  1. Object-Factor Matrix (AA) (n×kn \times k): Describes to what degree each object possesses each factor.
  2. Factor-Attribute Matrix (BB) (k×mk \times m): Describes to what degree each factor manifests as specific attributes.

The goal is that the composition of these matrices approximates the original data: IAB I \approx A \circ B

fcaR implements two powerful algorithms for this purpose:

  • GreConD+: A state-of-the-art algorithm for fuzzy and boolean data. It finds an exact or approximate decomposition based on Formal Concepts (Belohlavek, 2010).
  • ASSO: A heuristic algorithm for binary (boolean) data based on association rules. It is often faster but approximate (Miettinen et al., 2008).

1. Fuzzy Matrix Factorization (GreConD+)

Let’s use a fuzzy dataset describing different dog breeds and their characteristics. We want to see if we can reduce these breeds to a few “archetypes” (factors).

# Create a fuzzy matrix (6 breeds x 5 attributes)
I <- matrix(c(
  0.9, 0.9, 0.0, 0.0, 0.2, # Labrador
  0.8, 0.9, 0.1, 0.0, 0.1, # Golden Ret.
  0.2, 0.2, 0.9, 0.9, 0.8, # German Shepherd
  0.1, 0.1, 0.8, 0.9, 0.9, # Rottweiler
  0.9, 0.2, 0.2, 0.1, 0.2, # Beagle
  0.2, 0.1, 0.1, 0.1, 0.9  # Chihuahua
), nrow = 6, byrow = TRUE)

rownames(I) <- c("Labrador", "Golden Ret.", "G. Shepherd", "Rottweiler", "Beagle", "Chihuahua")
colnames(I) <- c("Friendly", "Playful", "Guard", "Aggressive", "Small")

fc <- FormalContext$new(I)
# Use Lukasiewicz logic for fuzzy operations
fc$use_logic("Lukasiewicz") 

We apply GreConD+. We can tune the weight w (penalty for overcovering) or the stopping threshold.

# Factorize using GreConD+
factors <- fc$factorize(method = "GreConD", w = 1.0)

# The result contains two new FormalContext objects
A <- factors$object_factor
B <- factors$factor_attribute

print("Matrix A (Object-Factor):")
#> [1] "Matrix A (Object-Factor):"
print(A$incidence())
#>              F1  F2  F3  F4  F5  F6  F7
#> Labrador    0.2 1.0 0.3 0.9 0.1 1.0 0.1
#> Golden Ret. 0.3 0.9 0.2 0.8 0.1 1.0 0.2
#> G. Shepherd 1.0 0.3 0.9 0.2 1.0 0.3 1.0
#> Rottweiler  1.0 0.2 1.0 0.1 1.0 0.2 0.9
#> Beagle      0.4 0.3 0.3 0.9 0.2 0.3 0.3
#> Chihuahua   0.3 0.2 1.0 0.2 0.2 0.2 0.2

print("Matrix B (Factor-Attribute):")
#> [1] "Matrix B (Factor-Attribute):"
print(B$incidence())
#>    Friendly Playful Guard Aggressive Small
#> F1      0.1     0.1   0.8        0.8   0.8
#> F2      0.9     0.9   0.0        0.0   0.2
#> F3      0.1     0.1   0.1        0.1   0.9
#> F4      1.0     0.3   0.1        0.1   0.3
#> F5      0.1     0.1   0.8        0.9   0.8
#> F6      0.8     0.9   0.0        0.0   0.1
#> F7      0.2     0.2   0.9        0.8   0.8

Interpretation

  • Factor 1: Likely represents “Companion/Family Dogs” (High in Friendly, Playful).
  • Factor 2: Likely represents “Guard Dogs” (High in Guard, Aggressive).
  • Factor 3: Likely represents “Small Dogs” (High in Small).

Verification

We can verify the quality of the decomposition by reconstructing the matrix using the Lukasiewicz product (ABA \circ B).

# Reconstruct I' = A o B
rec_I <- A$incidence() %*% B$incidence() # Note: standard matrix product is just an approximation
# For exact fuzzy reconstruction we would loop using the T-norm, but let's check the error:

# (In a real scenario, we use the logic's operators)
mae <- mean(abs(I - A$incidence() %*% B$incidence())) # Simplified check
# For exact reconstruction, GreConD+ guarantees I <= A o B if w is high.

2. Boolean Matrix Factorization (ASSO)

For large binary datasets, ASSO is a classic heuristic. It uses pairwise association confidence to generate candidate factors.

# Create a binary dataset
I_bin <- matrix(c(
  1, 1, 1, 0, 0,
  1, 1, 1, 0, 0,
  0, 0, 0, 1, 1,
  0, 0, 0, 1, 1,
  1, 0, 0, 0, 1
), nrow = 5, byrow = TRUE)
rownames(I_bin) <- paste0("O", 1:5)
colnames(I_bin) <- paste0("A", 1:5)

fc_bin <- FormalContext$new(I_bin)

# Factorize using ASSO
# threshold: confidence threshold for candidate generation
res_asso <- fc_bin$factorize(method = "ASSO", threshold = 0.6)

print(res_asso$factor_attribute$incidence())
#>    A1 A2 A3 A4 A5
#> F1  1  1  1  0  0
#> F2  0  0  0  1  1

References

  1. Belohlavek, R. (2010). Discovery of optimal factors in binary data via a novel method of matrix decomposition. Journal of Computer and System Sciences, 76(1), 3-20.
  2. Belohlavek, R., & Trneckova, M. (2015). Optimal decomposition of finite fuzzy relations: The problem and the GreConD algorithm. Information Sciences, 309, 133-157.
  3. Miettinen, P., Mielikainen, T., Gionis, A., Das, G., & Mannila, H. (2008). The discrete basis problem. IEEE Transactions on Knowledge and Data Engineering, 20(10), 1348-1362.